"Вечный" имплант размером с песчинку: будущее уже наступило -.
Инженеры университета разработали крошечный, размером с песчинку, сенсорный трансплант, который уже был успешно имплантирован в мышечную ткань и периферические нервы у крыс. Нейронная пыль" позволяет контролировать показатели жизнедеятельности в реальном времени, и может стать новой вехой в технологиях имплантирования и протезирования. Такие системы могут помочь медикам осуществлять более точные микрохирургические операции, а пациентам - лучше контролировать протезы
. Результаты исследования были опубликованы в последнем выпуске журнала Neuron.
По словам исследователей, датчик, длина которого составляет около 3 мм, содержит пьезоэлектрический кристалл, который преобразует ультразвуковые колебания в электричество, которое и питает трансплант. Датчики приводятся в действие импульсами ультразвука, испускаемыми каждые 100 микросекунд, что позволяет исследователям работать в режиме реального времени. Ультразвук был выбран потому, что он позволяет работать с "Крайне Маленькими Имплантами", в отличие от радиоволн.
"До этого у специалистов не было способа осуществлять телеметрию изнутри человеческого тела подобным образом, потому что они не могли расположить в организме что-то сверхминиатюрное. Но теперь я могу использовать этот крошечный датчик для того, чтобы работать с органами и даже нервами, без особого труда получая нужные данные", рассказывает Мишель махарбиц, один из ведущих авторов исследования.
Датчик покрыт слоем эпоксидной смолы, и ученые надеются, что более позднее поколение датчиков сможет существовать внутри человеческого тела десятилетиями, не подвергаясь распаду и не отторгаясь организмом.
"Если Пациенту Потребуется Управлять Роботизированной Рукой при Помощи Компьютера, то Можно Просто Имплантировать Электрод в Мозг, и Этого Хватит на всю Жизнь", поясняет Райан Нили, аспирант с кафедры нейробиологии калифорнийского университета в беркли.
В будущем исследователи надеются уменьшить свое изобретение еще сильнее. По данным Independent, они хотят достигнуть размера в 50 микрон, что позволит использовать его в головном мозге практически без ограничений.