Шумеры крупнейшее достижение древнегреческих математиков оспорили.
Ezomir.
Бенджамин и Эрик альтшулеры (соответственно город Нью-йорк и штат пенсильвания, США) показали, что вавилоняне (шумеры и аккадцы) на тысячу лет раньше индийцев и греков могли доказать иррациональность числа, равного квадратному корню из двух. Об этом авторы в публикации на сайте Arxiv сообщили. org.
Иррациональным называется вещественное число, которое не является рациональным (то есть не может быть представлено в виде дроби, в которой числитель - целое число, а знаменатель - натуральное. Квадратный корень из двух собой простейший пример иррационального числа представляет.
Доказательство этого факта считается одним из крупных достижений математики древней Греции (оно датируется 570-495 годы до нашей эры и приписывается пифагорейцам. Индийские математики могли на 150-200 лет раньше греков доказать иррациональность квадратных корней из 2 и 21.
Исследование альтшулеров показало, что жрецы Вавилона уже в 1800-1600 годах до нашей эры (более чем на тысячу лет раньше греков и индийцев) владели методами, позволяющими доказать иррациональность квадратного корня из двух. К своим выводам авторы пришли, рассмотрев глиняные таблички YBC 7289 и BM 15285, отображающие приближенный расчет квадратного корня из двух.
Первая табличка позволяла получить значение квадратного корня из двух с точностью до шестого знака после запятой (при помощи расчета диагонали квадрата. Вторая отображала геометрический способ проверки иррациональности квадратного корня из двух, а также содержит один из геометрических способов доказательства теоремы Пифагора. В препринте альтшулеры ссылались на известные ранее исследования вавилонских глиняных табличек, в которых также заявлялось о возможном владении древней цивилизацией методами доказательства иррациональности квадратного корня из двух. Авторы не знают, придавали вавилоняне явное значение иррациональности этого числа или воспринимали его неявно.