Физики возможность создания молекул света показали.
Впрочем, до световых мечей дело пока не дошло. Группа ученых, включая физиков - теоретиков из JQI и Nist, осуществили очередной шаг в направлении строительства объектов из фотонов; их выводы показывают, что безмассовые частицы света могут соединяться в своего рода "Молекулы" со своими особенностями. Ученые показали, что два фотона, изображенные художником в виде волн (слева и справа) могут объединиться на коротком расстоянии
. При определенных условиях эти фотоны могут образовать состояние, напоминающее двухатомную молекулу, представленную в виде голубой гантели в центре.
Работа ученых основана на предыдущих исследованиях. В 2013 году сотрудники гарварда, калтеха и MIT обнаружили способ связать два фотона вместе так, чтобы один находился на вершине другого, накладываясь в процессе путешествия. Их экспериментальную демонстрацию сочли прорывом, поскольку никто другой до этого момента не смог успешно совместить отдельные фотоны - казалось, световые мечи уже не за горами.
Теперь, в статье, опубликованной в Physical Review Letters, группа ученых теоретически показала, что настраивая несколько параметров процесса связывания, можно заставить фотоны двигаться бок о бок на определенном расстоянии друг от друга. Это выстраивание сродни расположению двух атомов водорода в молекуле водорода.
"Это не молекула сама по себе, но вы можете назвать эту структуру похожей, - говорит член JQI Алексей горшков. - мы учимся строить сложные состояния света, которые, в свою очередь, можно воплотить в более сложные объекты. Впервые кто-то продемонстрировал, как связать два фотона на конечном расстоянии друг от друга".
Хотя новые данные могут быть шагом в правильном направлении - если мы можем построить молекулу света, почему не сможем построить меч? - горшков говорит, что сомневается, что рыцари - джедаи появятся в сувенирном магазине Nist в ближайшем времени. Основная причина в том, что связывание фотонов требует экстремальных условий, которые сложно воспроизвести при комнатных или даже лабораторных условиях, не говоря уж о том, чтобы удержать целый меч таких молекул в руке. Тем не менее есть много других причин для производства молекулярного света - скромнее, чем световые мечи, но не менее полезных.
"Много современных технологий базируются на свете, от коммуникационных технологий до визуализаций высокой четкости, - говорит горшков. - многие из них значительно улучшились бы, если мы могли бы спроектировать взаимодействие между фотонами".
К примеру, инженерам нужен способ точно откалибровать датчики света, и горшков говорит, что их результаты могли бы существенно упростить создание "Обычной Свечи" с точным числом фотонов в детекторе. Еще более важным для отрасли может быть то, что связывание и запутывание фотонов позволит компьютерам использовать фотоны в качестве информационных процессоров; сейчас этим занимается электроника в ваших компьютерах.
Это не только обеспечит новую базу для создания компьютерных технологий, но и выльется в существенную экономию энергии. Телефонные сообщения и другие данные, которые сейчас путешествуют по оптоволоконным кабелям в виде света, необходимо конвертировать в электроны для обработки - а это неэффективный шаг, который расходует много электричества. Таким образом, если передача и обработка данных будет напрямую выполняться фотонами, она существенно снизит потери энергии. Горшков говорит, что будет важно проверить новую теорию на практике.
"Это отличный новый способ изучения фотонов, - говорит он. - они безмассовые и летают со скоростью света. В том случае, если замедлить, связать и изучить их, получится узнать много новых вещей, которых мы о них прежде не знали".