Наука для всех простыми словами

Самый лучший сайт c познавательной информацией.

Квантовый компьютер. Что нам дадут квантовые компьютеры?

29.11.2015 в 17:28

Квантовый компьютер. Что нам дадут квантовые компьютеры?

Даже если слово "Квантовый" не пугает вас, квантовые компьютеры все еще остаются скорее причудливыми концепциями научной фантастики, нежели реальностью. Однако последние достижения в этой области предполагают, что эти безумно быстрые компьютеры могут появиться раньше, чем мы думаем. И у нас есть много причин волноваться по поводу их прибытия.

Квантовый компьютер. Что нам дадут квантовые компьютеры?Рэй Джонсон, член совета директоров стартапа квантовых вычислений Qxbranch, одной из многих компаний, которые работают над перемещением квантовых компьютеров из лабораторий в реальный мир, рассказал об этих причинах в интервью Business Insider.

Соблазном квантовых компьютеров является их способность решать почти неразрешимые проблемы - настолько сложные проблемы, что для их решения современным компьютерам потребовались бы десятилетия. В теории квантовый компьютер сможет решить эти вопросы, пока вы пьете утренний кофе.

"Неразрешимые" проблемы.
Обычные компьютеры, которые мы используем каждый день, используют "Биты" для хранения информации - 1 и 0 - и строки из этих нулей и единиц, представляющих определенную цифру или букву.

В противовес этому, квантовые компьютеры используют преимущества довольно странных физических явлений, когда крошечные частицы могут существовать в нескольких местах одновременно. Вместо того чтобы использовать биты, обладающие только двумя "Установками", они используют квантовые биты, или "кубиты", у которых есть дополнительная установка: они могут быть 1 или 0, или 1 и 0 одновременно.

Таким образом, обычный компьютер с двумя битами может кодировать информацию , внимание, только в четырех возможных комбинациях: 00, 01, 10, 11. Квантовый компьютер может принимать все эти четыре комбинации одновременно. Это позволяет ему обрабатывать экспоненциально больше информации, чем могут обычные компьютеры.

Другой способ задуматься о разнице между обычными и квантовыми компьютерами - это подумать о версии знаменитой задачи о коммивояжере в математике. В этой задаче вы - коммивояжер, планирующий поездку, и вы хотите выяснить, какой маршрут через 10 разных городов будет самым дешевым (экономичным) и самым быстрым.

Обычному компьютеру придется рассчитывать длину всех этих маршрутов отдельно, а затем сравнивать результаты, определяя победителя. Квантовый компьютер может вычислить длины всех маршрутов одновременно, поскольку кубиты могут обрабатывать много информации одновременно - и следовательно быстрее найдут решение.

Квантовые различия.

Есть несколько препятствий на пути к распространению квантовых компьютеров по всему миру.

В настоящее время эти компьютеры должны храниться в переохлажденных условиях и даже легкое беспокойство приведет к коллапсу их деликатного состояния. Тем не менее, благодаря серьезному прорыву Google в марте, инженеры выяснили, как сделать квантовые компьютеры более стабильными - некоторые даже заговорили, что мы находимся на полпути к полностью функциональным квантовым компьютерам. Google, Nasa и IBM усиленно работают над воплощением этой затеи.

И когда мы наконец достигнем этой точки, квантовые компьютеры смогут осуществить революцию практически в любой отрасли.

Джонсон, бывший CTO Lockheed Martin, объяснил, что компьютеры, которые у нас сейчас есть, хорошо делают то, что люди делают плохо. К примеру, люди не могут запомнить 10 миллионов чисел, расставить их в таблице, а затем быстро произвести расчеты с этими числами. Зато это делают компьютеры.

Квантовый компьютер не сможет сделать это быстрее любого обычного компьютера. Нет более хорошего или быстрого способа производить вычисления с набором чисел. Однако квантовые компьютеры могут сократить разрыв между тем, что компьютеры делают хорошо и что люди делают хорошо.

Люди хорошо пробираются через сложные установки и выбирают нужные вещи из этих массивов. Наши мозги делают это вполне естественно и с куда меньшими затратами, чем может компьютер. Квантовые компьютеры, однако, будут работать больше как человеческий мозг.

Дело в том, что, как и люди, квантовые компьютеры могут обучаться с получением опыта. К примеру, если квантовый компьютер работает под управлением программы, которая плохо справляется с определенной задачей, он может самостоятельно внести изменения в код этой программы и избавить ее от совершения ошибок в дальнейшем.

Эта концепция машинное обучение называется. Оно похоже на то, как ваш почтовый сервис обучается, какие письма отправлять в спам, а какие нет, только более хитроумное. Машинное обучение квантовых компьютеров позволит нам делать многие вещи быстрее и с большей эффективностью.

Например, квантовые компьютеры могут существенно улучшить аэрокосмические, военные и оборонные системы. Со всеми спутниками, которые у нас имеются, мы постоянно собираем тонны изображений и видео. Большую часть этих данных никто не просматривает, поскольку в ней сложно разобраться. В том числе и потому, что современные компьютеры не очень хорошо распознают и выделяют нужные данные из собранного ряда.

Квантовые компьютеры могут сортировать гигантские объемы данных быстрее и точнее людей, которым нужно просматривать снимки и видео, чтобы понять их смысл.

Та же способность квантовых компьютеров может привести нас к безопасному транспорту. Квантовые компьютеры могут лечь в основу полуавтоматических автомобилей (не таких интересных, как самоуправляемые авто Google, но все же), которые смогут предупреждать нас о возможном столкновении и самостоятельно принимать некоторые решения во время езды.

Мы пока не знаем даже и одного процента возможностей квантовых компьютеров и сопряженных с ними изменений. Джонсон считает, что мы увидим больше прорывов в следующие годы и очень важные изменения уже через пять лет.

Квантовый компьютер в каждом доме - этот план довольно долгосрочный. Но ключевой момент - это создание простого интерфейса, которым каждый сможет воспользоваться. Над этим и работает Qxbranch. Впрочем, промышленные и коммерческие применения квантовых компьютеров не кажутся такими уж долгосрочными.

Квантовая механика. Значение квантовой механики

Квантовая механика имеет важное значение для понимания поведения систем в атомных и меньших масштабах расстояний. Если бы физическая природа атома описывалась исключительно классической механикой, то электроны не должны были вращаться вокруг ядра, так как орбитальные электроны должны испускать излучение (вследствие кругового движения) и в конечном итоге сталкиваться с ядром из-за потери энергии на излучение. Такая система не могла объяснить устойчивость атомов. Вместо этого электроны находятся в неопределенных, недетерминистических, размазанных, вероятностных корпускулярно-волновых орбиталях около ядра, вопреки традиционным представлениям классической механики и электромагнетизма.

Первоначально квантовая механика была разработана для лучшего объяснения и описания атома, особенно различий в спектрах света, излучаемых различными изотопами одного и того же химического элемента, а также описания субатомных частиц. Короче говоря, квантово-механическая модель атома оказалась поразительно успешной в той области, где классическая механика и электромагнетизм оказались беспомощны.

Квантовый компьютер 2019. Google представила новый квантовый процессор

    Корпорация Google представила 72-кубитный квантовый процессор Bristlecone. С помощью этого процессора подразделение Google Quantum AI lab, ответственное за разработку квантового компьютера, будет тестировать системные ошибки и масштабируемость технологии, а также области применения квантовой симуляции, оптимизации и машинного обучения «для решения проблем реального мира», как пишет компания в блоге .
    Квантовый компьютер 2019. Google представила новый квантовый процессорНовый 72-кубитный квантовый процессор Google Bristlecone построен по принципу, который позволил в предыдущем 9-кубитном процессоре показать низкую частоту ошибок при считывании данных (1%), при работе однокубитного вентиля — 0,1% и при работе двухкубитного вентиля — 0,6%, что, как отмечает Google, было лучшим результатом компании. Перед применением нового процессора в работе важно понять его возможности: команда создала инструмент, проверяющий его на ошибки, с помощью решения идентичных задач на квантовом процессоре и в классической симуляции. При низком количестве ошибок может быть достигнуто «квантовое превосходство».
    Прогноз Google: зависимость количества ошибок от количества кубитов в процессоре
    Квантовые компьютеры используют квантовую суперпозицию и квантовую запутанность для передачи и обработки данных. Одной из главных задач квантовых компьютеров станет усиление искусственного интеллекта . Кубиты квантового процессора — это квантовые аналоги битов. Два расположенных рядом кубита имеют четыре состояния — оба вкл, оба выкл, вкл/выкл и выкл/вкл, каждый из них имеет вес или «амплитуду», которая способна играть роль нейрона; третий кубит в такой системе позволяет представить восемь нейронов, а четвёртый — шестнадцать. Изменение состояния четырёх кубитов приводит к обработке шестнадцати нейронов за один раз, в то время как классический компьютер обрабатывал бы эти числа по одному.
    Одной из проблем при работе квантового компьютера является количество ошибок, которые возникают при вычислениях, считывании и записи информации в кубиты. В июне 2016 года исследователи из Google построили процессор из 9 кубитов, который показал высокую надёжность. Эту разработку они смогли масштабировать к марту 2018 года, увеличив количество кубитов до 72. В процессоре кубиты расположены в два слоя 6x6 друг над другом. Подразделение Google Quantum AI lab тестирует разработку.
    Квантовый процессор Bristlecone состоит из 72 кубитов, изображённых на схеме (справа) в форме «X», где точки соприкосновения концов символа отображает связь кубита с ближайшими «соседями»
    На данный момент квантовыми компьютерами занимаются ряд исследовательских команд, в том числе — IBM. В марте 2017 года компания объявила о запуске проекта IBM Q, и к июню представила два процессора: 16-кубитный для работы в научной сфере и 17-кубитный для коммерческого использования. В 2017 году IBM Research разработала 49-кубитный процессор.
    В июле 2017 года команда российских и американских учёных из Гарвардского университета, возглавляемая сооснователем Российского квантового центра (РКЦ) Михаилом Лукиным, сообщила о создании 51-кубитного квантового компьютера.
    В России в марте 2018 года между Внешэкономбанком, компанией «ВЭБ Инновации», Фондом перспективных исследований (ФПИ), МГУ имени Ломоносова и АНО «Цифровая экономика» было подписано соглашение о разработке 50-кубитного квантового компьютера.

    Квантовый компьютер IBM. IBM представила свой первый квантовый компьютер массового производства (2 фото + видео)

    Квантовый компьютер IBM. IBM представила свой первый квантовый компьютер массового производства (2 фото + видео)

    Компания IBM представила на CES свой первый коммерческий квантовый компьютер для использования за пределами лаборатории. 20-кубитная система объединяет в одном коробке квантовые и классические вычислительные компоненты, необходимые для использования подобной машины в исследовательских и бизнес-приложениях. Конечно, этот короб — IBM Q — все еще огромный, но он включает в себя все, что нужно компании для начала экспериментов с квантовыми вычислениями, включая и все механизмы для охлаждения оборудования.

    IBM готова выпускать квантовые компьютеры

    Хотя IBM описывает ее как первую полностью интегрированную универсальную систему квантовых вычислений, разработанную для научного и коммерческого использования, стоит подчеркнуть, что 20-кубитная машина еще не настолько мощна для большинства коммерческих приложений, которые люди предполагают видеть в дальнейшем с компьютерами с большим числом кубитов — и кубитами, которые будут полезны в течение более чем 100 микросекунд. Поэтому неудивительно, что IBM подчеркивает, что это первая попытка и что эти системы «однажды будут решать проблемы, которые сегодня мы видим слишком сложными и экспоненциальными по природе для того, чтобы их могли решить классические системы».

    Квантовый компьютер IBM. IBM представила свой первый квантовый компьютер массового производства (2 фото + видео)

    В данный момент мы к этому не готовы, но компания обещает обновлять и обслуживать системы.

    «IBM Q System One — важный шаг вперед в коммерциализации квантовых вычислений», говорит Арвинд Кришна, старший вице-президент Hybrid Could и директор IBM Research. «Эта новая система имеет решающее значение для расширения квантовых вычислений за стенами исследовательской лаборатории, поскольку мы работаем над созданием практически квантовых приложений для бизнеса и науки».

    Больше всего IBM, похоже, гордится дизайном систем Q. В ответ на суперкомпьютеры Cray, IBM поработала с Map Project Office и Universal Design Studio, а также с Goppion, компанией, которая построила, среди прочего, витрины, в которых демонстрируются британские драгоценности короны и «Мона Лиза». IBM определенно видит в системе Q произведение искусства. Это воздухонепроницаемая коробка высотой 3 и шириной 3 метра, в центре которой висит люстра для квантовых вычислений, все детали которой аккуратно спрятаны.

    Преимущества квантового компьютера. Принцип работы квантового компьютера

    Чтобы понимать, как работает новый процессор, необходимо иметь хотя бы поверхностные знания принципов квантовой механики. Нет смысла приводить здесь математические раскладки и выводить формулы. Обывателю достаточно ознакомиться с тремя отличительными особенностями квантовой механики:

    • Состояние или положение частицы определяется только с какой-либо долей вероятности.
    • Если частица может иметь несколько состояний, то она и находится сразу во всех возможных состояниях. Это принцип суперпозиции.
    • Процесс измерения состояния частицы приводит к исчезновению суперпозиции. Характерно, что полученное измерением знание о состоянии частицы отличается от реального состояния частицы до проведения замеров.

    С точки зрения здравого смысла – полная бессмыслица. В нашем обычном мире эти принципы можно представить следующим образом: дверь в комнату закрыта, и в то же время открыта. Закрыта и открыта одновременно.

    Преимущества квантового компьютера. Принцип работы квантового компьютера

    В этом и заключено разительное отличие вычислений. Обычный процессор оперирует в своих действиях бинарным кодом. Компьютерные биты могут находиться только в одном состоянии – иметь логическое значение 0 или 1. Квантовые компьютеры оперируют кубитами, которые могут иметь логическое значение 0, 1, 0 и 1 сразу. Для решения определённых задач они будут иметь многомиллионное преимущество по сравнению с традиционными вычислительными машинами. Сегодня уже есть десятки описаний алгоритмов работы. Программисты создают особый программный код, который сможет работать по новым принципам вычислений.

    Квантовый компьютер хабр. Первый коммерческий квантовый компьютер — IBM

      В рамках проходящей в данный момент выставки CES 2019 подразделение IBM Research провело анонс первой в мире квантовой системы, пригодной для коммерческого применения.
      Анонсированный квантовый компьютер IBM Q System One включает в себя систему из 20 кубитов. Железо способно к самокалибровке и оптимизировано для работы в криогенных условиях, эти меры необходимы для уменьшения числа ошибок. Кроме того, компьютер имеет собственную высокопроизводительную криогенную систему, а по заявлению IBM допустимо проводить диагностику, обслуживание и даже модернизацию системы без её выключения, с сохранением возможности работы пользователей.
      Важной характеристикой, на которой производитель акцентирует внимание, является встроенный функционал для подключения квантового компьютера к облачной системе. Таким образом происходит функциональный переход от специализированных квантовых систем на чипе, используемых в экспериментальных целях, к полноценной интеграции квантовых вычислений для пользовательских систем и нужд бизнеса.
      В целях развития экосистемы квантовых вычислений IBM так же объявила о создании консорциума с ExxonMobil, Европейской организацией по ядерным исследованиям (ЦЕРН) и Fermilab, для поиска максимального числа задач, в которых применение подобных интегрированных квантовых систем было бы эффективно. Данная группа организаций не является закрытой и уже объявлено приглашение к сотрудничеству для иных заинтересованных сторон.
      Во второй половине 2019, в городе Покипси (англ. Poughkeepsie) штата Нью-Йорк, IBM планирует открыть «IBM Q Quantum Computation Center», который будет выступать штаб-квартирой развития сложных интегрированных квантовых систем и содействовать их практическому внедрению.
      Стоит отметить, что дизайн системы выполнен несколькими известными студиями и удивительно красив, для такого утилитарного устройства. Во многом прослеживается преемственность с первым коммерческим суперкомпьютером Cray-1. Как по форме (пусть и зеркально перевёрнутый), так и по размерам, а так же в части использования стекла.
      На момент составления заметки сайт IBM с промо-разделом квантового компьютера был недоступен.

      Видео Как работает квантовый компьютер?

      Квантовые компьютеры. Квантовая криптография

      Как ни странно, спасение телекоммуникаций от квантовой угрозы лежит в той же сфере, где и сама угроза. Связь, основанную на передаче единичных микрочастиц, по идее невозможно прослушивать, поскольку законы квантовой физики не позволяют измерить параметры микрочастицы, не исказив их. Это явление, известное как принцип наблюдателя (и часто путаемое с принципом неопределенности Гейзенберга), в теории устраняет основную проблему «классической» связи  — возможность прослушивания. Попытка прослушать сигнал искажает сообщение.

      Попытка прослушать сигнал искажает сообщение.

      Поэтому значительный процент помех на линии означает, что она прослушивается. Разумеется, хочется не только узнать о том, что вас слушают, но и предотвратить попадание информации в чужие руки. Поэтому квантовые криптосистемы обычно используют «квантовую» линию связи для передачи одноразового ключа шифрования, который, в свою очередь, применяется для шифровки сообщения и трансляции по обычной линии связи. То есть квантовая криптосистема распределения ключей выполняет ровно ту же роль, что асимметричные криптоалгоритмы, которые собираются пасть под напором квантовых вычислений. Так вот, в случае подозрения на прослушивание потенциально перехваченный ключ просто не используется, и передача важных данных идет, только если квантовая передача ключа прошла успешно.

      Квантовые компьютеры. Квантовая криптография

      Коммерческая система Cerberis для квантового распределения ключей

      В отличие от квантовых компьютеров, квантовые криптосистемы уже давно не являются лабораторной инновацией. Хотя первые научные работы на эту тему появились тоже на рубеже 70–80-х годов ХХ века, до практического воплощения дело дошло быстрее. Первые лабораторные тесты прошли в 1989 году, а уже в конце 90-х функционировали коммерческие системы квантовой передачи ключей на расстояние от 20 до 50 км. Такие компании, как id Quantique и MagiQ Technologies, продают готовые системы передачи криптоключей по обычному оптоволоконному кабелю. Эти системы достаточно просты для установки обычным специалистом по прокладке компьютерных сетей. Соответственно, кроме разного рода военных и правительственных организаций их взяли на вооружение крупные коммерческие организации, банки и даже FIFA.

      Квантовый процессор: описание работы

      Классические биты могут принимать значение 0 или 1. Если пропустить их строку через «логические вентили» (И, ИЛИ, НЕ и т. д.), то можно умножать числа, рисовать изображения и т. п. Кубит же может принимать значения 0, 1 или оба одновременно. Если, скажем, 2 кубита запутаны, то это делает их совершенно коррелированными. Процессор квантового типа может использовать логические вентили. Т. н. вентиль Адамара, например, помещает кубит в состояние совершенной суперпозиции. Если суперпозицию и запутанность совместить с умно расположенными квантовыми вентилями, то начинает раскрываться потенциал субатомных вычислений. 2 кубита позволяют исследовать 4 состояния: 00, 01, 10 и 11. Принцип работы квантового процессора таков, что выполнение логической операции дает возможность работать со всеми положениями сразу. И число доступных состояний равно 2 в степени количества кубитов. Так что, если сделать 50-кубитный универсальный квантовый компьютер, то теоретически можно исследовать все 1,125 квадриллиона комбинаций одновременно.

      Квантовая запутанность. Теорема Белла. Спор разрешён?

      Джон Клаузер, будучи ещё аспирантом Колумбийского университета, в 1967 отыскал забытую работу ирландского физика Джона Белла. Это была сенсация: оказывается Беллу удалось вывести из тупика спор Бора и Энштейна . Он предложил экспериментально проверить обе гипотезы. Для этого он предложил построить машину, которая бы создавала и сравнивала много пар запутанных частиц. Джон Клаузер принялся разрабатывать такую машину. Его машина могла создавать тысячи пар запутанных частиц и сравнивать их по разным параметрам. Результаты экспериментов доказывали правоту Бора.

      А вскоре французский физик Ален Аспе провёл опыты, один из которых касался самой сути спора между Энштейном и Бором. В этом опыте измерение одной частицы могло прямо повлиять на  другую только в случае, если сигнал от 1-й ко 2-й прошёл бы со скоростью, превышающей скорость света. Но сам Энштейн доказал, что это невозможно. Оставалось только одно объяснение – необъяснимая, сверхъестественная связь между частицами.

      Результаты опытов доказали, что теоретическое предположение квантовой механики – верно. Квантовая запутанность – это реальность ( ). Квантовые частицы могут быть связанными несмотря на огромные расстояния. Измерение состояния одной частицы влияет на состояние далеко расположенной от нёё 2-й частицы так, как если бы расстояния между ними не существовало. Сверхъестественная связь на расстоянии происходит в действительности.