Наука для всех простыми словами

Самый лучший сайт c познавательной информацией.

Хромота математического образования.

08.12.2016 в 06:28

Почему математика в школе не выполняет функцию зарядки для ума, а баллы ЕГЭ - не показатель математической образованности?

Банально, но чтобы учиться хорошо, нужно уметь читать, писать, изъясняться и понимать сказанное; уметь анализировать, размышлять, понимать суть проблем, закономерностей, причинно-следственных связей; иметь достаточную работоспособность, упорство для освоения материалов, уроков, выполнения заданий.
Хромота математического образования.
Как приобрести эти столь необходимые качества? Полигоном" для интенсивных тренировок - одновременно умственных, накопительных и физических - должны быть два предмета: родной язык и математика.
Цель этих предметов не в том, чтоб подготовить будущих литераторов или математиков. И не в том, чтобы накопить сумму знаний. Основная польза - в приобретаемых в процессе обучения качеств. Ценность умения решать тригонометрические уравнения не в них самих, ибо они многим ученикам в жизни так и не встретятся, а в дороге, которая привела к этому умению, в приобретённых по пути навыках.
Успехи по этим системообразующим предметам практически гарантируют успешность обучения по другим, избранным учеником предметным областям. При этом недостаточное внимание к умению читать, понимать, размышлять, работать делает весьма проблематичным освоение прочих материалов - отсюда многие трудности обучения.
Несмотря на то, что в учебном плане математике и родному языку отведено немало часов, мы не можем сказать, что в школе уделяется должное внимание развитию перечисленных качеств.

Уроки математики не становятся тем самым полигоном для тренировки ума, и можно выделить две основные причины, почему так происходит.

Первая кроется в том, чему учит школа. Вторая - в том, кого она учит.

Образование или накопление фрагментов знаний.
Современная школа как будто не может определиться сама, к чему она стремится: дать полноценное образование или "Научить Хоть Чему-то", дать набор компетенций для сдачи экзаменов.
С одной стороны, мы имеем принципиально не изменившиеся с советских времён структуру и содержание учебных программ, дополненные новыми, усложнёнными материалами. С другой стороны, в соответствии с внедрёнными за последние десятилетия контролирующими итоговыми госэкзаменами, требующими тестирующих результатов накопленных знаний, школьное обучение превратилось в гонку за овладение фрагментами знаний для разрешения тех или иных видов тестов, сетки задач со всего предмета.

Обучение математике превратилось в освоение алгоритмов решения около 1800 разнотипных задач, без скрепляющих, общематематических понятий, умений, навыков.

В такой ситуации самое худшее и опасное в долгосрочной перспективе - это то, что массивное, но бездумное, без стержня, на кратковременный экзаменационный период накопление якобы "Знаний" создаёт иллюзию обретения образованности.

В нашей системе образования никого не интересуют промежуточные результаты, персональная история обучения, накапливаемые учебные достижения - рефераты, самостоятельные работы, эссе. Всё это не играет никакой роли после последнего звонка.

В итоге достигнутый на экзамене балл выше реального понимания предмета и, в то же время, ниже истинных возможностей учеников, откровенно "не Добирающих" в соответствии с собственными способностями. О чём свидетельствуют скудные, неполные знания первокурсников, порой неприкрытая необразованность, проявленная по элементарным, базовым понятиям, немного иначе сформулированным вопросам, чем в привычном тесте.

Приоритеты: для кого работает школа.
Советская школа, делая упор на всестороннее образование, приносила наибольшую пользу условным "Отличникам" - ученикам, готовым и способным обучаться по высоким стандартам. А что остальные? Часть фактически не обучалась, а "Середняки" получали фрагментарные, неглубокие знания.
В итоге образование было по сути элитарным, эффективность достигалась при счастливом совпадении "Качественных" учителя и ученика. Школа обслуживала интересы меньшинства - учеников с достаточным желанием и возможностью постичь знания при соответствующих преподавателях.

Ситуация не изменилась. Для кого работает современная школа? Лишь для малой части успешных учеников, отличников.

Для двоечников она бесполезна, разве что как клуб по интересам: не шататься без дела по улице. Середняки же в классах по 25-30 человек неизбежно "Тормозят" процесс обучения, в том числе и отличников.
Доминирующая масса современных студентов - это бывшие школьные середняки, скажем мягко, не - до - образованные, с фрагментами знаний. И именно они определяют уровень и тенденции образования уже в высшей школе. Став дипломированными специалистами, с ложными представлениями о своей образованности, эти люди, по сути "Троечники", диктуют свои взгляды в разных областях, в том числе и в образовательной среде. И так по кругу.

Поэтому насущная задача: переориентировать усилия средней школы с отличников на теперешних троечников и хорошистов, тех, у кого достаточно желаний получить требуемое образование, но нет возможности осилить трудности без дополнительной, индивидуальной помощи и постоянного контроля.
Эта группа, в силу многочисленности, создаёт основной образовательный фон, соответственно, позитивные изменения по отношению к ней повлекут улучшение качества образования в целом, в том числе и для отличников.

Обучение математике: особенности и проблемы.
Из-за того, что школа ориентирована на фрагментарную подготовку к тестовым экзаменам и при этом задаёт такой быстрый темп, за которым успевают лишь наши условные "Отличники", реальная картина математических знаний печальна. У большинства проблемы даже в элементарных вопросах: операции с дробями, навыки работы со скобками, понимание сути выражений, слагаемых и множителей, знание и применение формул, решение простых уравнений, элементарные знания сути и свойств функций, графиков. Не говоря о более образовательных моментах: преобразования выражений, уравнений, исследования математических объектов, понятие сути теорем, алгоритмов. Порой, вследствие недостаточного контроля, происходит укрепление ошибочных знаний, приобретение ложных навыков.
Все перечисленные недостатки немного ретушируются перед госэкзаменами: с одной стороны, за счёт огромного "Зубрительного" напряжения, с другой, из-за снижения уровня, сужения требовательности контрольных заданий. В итоге лишь малая часть будущих студентов удовлетворяет минимальным стандартам истинной математической образованности. Разумеется, это проблема многогранная. Перечислим лишь только некоторые из её сторон. Продолжение: