Наука для всех простыми словами

Самый лучший сайт c познавательной информацией.

Фейнмана точка. Точка Фейнмана - последовательность из шести девяток, начинающаяся с 762-ой цифры десятичной записи числа Пи.

13.01.2016 в 15:55

Фейнмана точка. Точка Фейнмана - последовательность из шести девяток, начинающаяся с 762-ой цифры десятичной записи числа Пи.

Носит имя американского физика Ричарда фейнмана (1918-1988), который сказал на одной лекции, что хотел бы запомнить цифры числа пи до этой позиции, чтобы заканчивать рассказ кому-либо словами "Девять, Девять, Девять, Девять, Девять, Девять и так Далее", как бы предполагая, что значение? Рационально.

На изображении сверху представлены первые 1300 цифр числа? И. две повторяющиеся цифры помечены жёлтым, три - зелёным, а шесть - красным.

Фейнмана точка. Точка Фейнмана - последовательность из шести девяток, начинающаяся с 762-ой цифры десятичной записи числа Пи.Из случайно выбранных чисел частота встречаемости шести цифр подряд равна приблизительно 0, 08% (на данный момент неизвестно, является ли? Нормальным числом).

Следующая комбинация шести цифр подряд, опять девяток, в числе пи встречается на позиции 193 034. На позиции 222 299 можно найти шесть восьмёрок. Ноль повторяется шесть раз в позиции 1 699 927. Последовательность же "12345678" встречается уже в позиции 186 557 266. Последовательность цифр "141592", которая находится сразу после запятой, повторяется в позиции 821 582. Последовательность "123456789", можно встретить уже только на позиции 523 551 502.

Точкой фейнмана также называют первое возникновение последовательности четырёх или пяти идентичных цифр. Например, точка фейнмана для цифры 7 - 1589, позиция в числе пи, где семёрка впервые повторяется четыре раза подряд.

Пи точка Фейнмана. Точка Фейнмана

Точка Фейнмана  — последовательность из шести девяток, начинающаяся с 762 -й цифры десятичной записи числа пи . Носит имя американского физика Ричарда Фейнмана (1918—1988), который сказал на одной лекции, что хотел бы запомнить цифры числа пи до этой позиции, чтобы заканчивать рассказ кому-либо словами «девять, девять, девять, девять, девять, девять и так далее», как бы предполагая, что значение π рационально .

Для случайно выбранной последовательности цифр вероятность встретить шесть девяток подряд где-то среди первых 762 цифр равна приблизительно 0,08 % (на данный момент неизвестно, является ли π нормальным числом ).

Следующая комбинация шести одинаковых цифр подряд, опять девяток, в числе пи встречается на позиции 193 034 . На позиции 222 299 можно найти шесть восьмёрок. Ноль повторяется шесть раз в позиции 1 699 927 . Последовательность же «12345678» встречается уже в позиции 186 557 266 . Последовательность цифр «141592», которая находится сразу после запятой, повторяется в позиции 821 582 . Последовательность «123456789», можно встретить уже только на позиции 523 551 502 .

Точкой Фейнмана также называют первое возникновение последовательности четырёх или пяти идентичных цифр. Например, точка Фейнмана для цифры 7 — 1589, позиция в числе пи , где семёрка впервые повторяется четыре раза подряд.

Как ещё нередко называют число Пи. Кто открыл число Пи? История вычислений

Уже много веков и даже, как ни странно, тысячелетий люди понимают важность и ценность для науки математической постоянной, равной отношению длины окружности к ее же диаметру.  число Пи, до сих пор неизвестно, но к нему имели отношение самые лучшие математики на протяжении всей нашей истории. Большинство из них хотели выразить его рациональным числом.

Интересные сведения о числе Пи

1. Исследователи и истинные поклонники числа Пи организовали клуб, для вступления в который требуется знать наизусть достаточно большое количество его знаков.

2. С 1988 года празднуется «День числа Пи», который приходится на 14 марта. Готовят салаты, торты, печенья, пирожные с его изображением.

3. Число Пи уже переложили на музыку, при этом оно весьма неплохо звучит. Ему даже воздвигли памятник в американском Сиэтле перед зданием городского Музея искусств.

Древний период

В то далекое время число Пи старались вычислить при помощи геометрии. То, что это число постоянно для самых разных окружностей, знали еще геометры в Древнем Египте, Вавилоне, Индии и Древней Греции, утверждавшие в своих работах, что оно всего лишь немного больше трех.

В одной из священных книг джайнизма (древняя индийская религия, которая возникла в VI в. до н. э.) упоминается, что тогда число Пи считалось равным корню квадратному из десяти, что в итоге дает 3,162… .

Древнегреческие математики проводили измерение окружности методом построения отрезка, а вот для того, чтобы измерить круг, им приходилось строить равновеликий квадрат, то есть фигуру, равную ему по площади.

Когда еще не знали десятичных дробей, великий Архимед нашел значение числа Пи с точностью 99,9%. Он открыл способ, который стал основой многих последующих вычислений, вписывал в окружность и описывал вокруг нее правильные многоугольники. В результате Архимед рассчитал значение числа Пи как отношение 22 / 7 ≈ 3,142857142857143.

В Китае, математик и придворный астроном, Цзу Чунчжи в V веке до н. э. обозначил более точное значение числа Пи, рассчитав его до семи цифр после запятой и определил его значение между числами 3, 1415926 и 3,1415927. Более 900 лет понадобилось ученым, чтобы продолжить дальше этот цифровой ряд.

Средние века

Известный индийский ученый Мадхава, который жил на рубеже XIV - XV веков, ставший основателем Керальской школы астрономии и математики, впервые в истории стал работать над разложением тригонометрических функций в ряды. Правда, сохранились всего лишь два его труда, а на другие известны лишь ссылки и цитаты его учеников. В научном трактате «Махаджьянаяна», который приписывают Мадхаве, указано, что число Пи равно 3,14159265359. А в трактате «Садратнамала» приведено число с еще большим количеством точных знаков после запятой: 3,14159265358979324. В указанных числах последние цифры не соответствуют правильному значению.

В XV веке самаркандский математик и астроном Ал-Каши вычислил число Пи с шестнадцатью знаками после запятой. Его результат считался наиболее точным в течение последующих 250 лет.

У. Джонсон, математик из Англии, одним из первых смог обозначить отношение длины окружности к ее диаметру буквой π. Пи — это первая буква греческого слова «περιφέρεια» — окружность. Но этому обозначению удалось стать общепринятым лишь после того, как им воспользовался в 1736 году более известный ученый Л. Эйлер.

Заключение

Современные ученые продолжают работать над дальнейшими вычислениями значений числа Пи. Для этого уже используют суперкомпьютеры. В 2011 г. ученый из Сигэру Кондо, сотрудничая с американским студентом Александром Йи, произвели правильный расчет последовательности из 10 триллионов цифр. Но до сих пор так и неясно, кто открыл число Пи, кто впервые задумался над этой проблемой и произвел первые расчеты этого, по-настоящему мистического числа.

Число Пи точка Фейнмана. Точка Фейнмана

Точка Фейнмана  — последовательность из шести девяток, начинающаяся с 762 -ой цифры десятичной записи числа пи . Носит имя американского физика Ричарда Фейнмана (1918—1988), который сказал на одной лекции, что хотел бы запомнить цифры числа пи до этой позиции, чтобы заканчивать рассказ кому-либо словами «девять, девять, девять, девять, девять, девять и так далее», как бы предполагая, что значение π рационально .

Статистика

Для случайно выбранной последовательности цифр вероятность встретить шесть девяток подряд где-то среди первых 762 цифр равна приблизительно 0,08 % (на данный момент неизвестно, является ли π нормальным числом ).

Следующая комбинация шести одинаковых цифр подряд, опять девяток, в числе пи встречается на позиции 193 034 . На позиции 222 299 можно найти шесть восьмёрок. Ноль повторяется шесть раз в позиции 1 699 927 . Последовательность же «12345678» встречается уже в позиции 186 557 266 . Последовательность цифр «141592», которая находится сразу после запятой, повторяется в позиции 821 582 . Последовательность «123456789», можно встретить уже только на позиции 523 551 502 .

Точкой Фейнмана также называют первое возникновение последовательности четырёх или пяти идентичных цифр. Например, точка Фейнмана для цифры 7 — 1589, позиция в числе пи , где семёрка впервые повторяется четыре раза подряд.

Точка Фейнмана для основания натуральных логарифмов числа e встречается на значительно более удалённом месте ( 384 340-я позиция), при этом последовательность включает сразу восемь идущих подряд девяток.

Десятичное представление

Число пи до точки Фейнмана (включительно):

3,1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164 0628620899 8628034825 3421170679 8214808651 3282306647 0938446095 5058223172 5359408128 4811174502 8410270193 8521105559 6446229489 5493038196 4428810975 6659334461 2847564823 3786783165 2712019091 4564856692 3460348610 4543266482 1339360726 0249141273 7245870066 0631558817 4881520920 9628292540 9171536436 7892590360 0113305305 4882046652 1384146951 9415116094 3305727036 5759591953 0921861173 8193261179 3105118548 0744623799 6274956735 1885752724 8912279381 8301194912 9833673362 4406566430 8602139494 6395224737 1907021798 6094370277 0539217176 2931767523 8467481846 7669405132 0005681271 4526356082 7785771342 7577896091 7363717872 1468440901 2249534301 4654958537 1050792279 6892589235 4201995611 2129021960 8640344181 5981362977 4771309960 5187072113 4 999999


Видео What is Feynman Point?

История возникновения числа Пи. История числа Пи

партнерские

История числа Пи начинается еще с Древнего Египта и идет параллельно с развитием всей математики. Мы же впервые встречаемся с этой величиной в стенах школы.

Число Пи является, пожалуй, самым загадочным из бесконечного множества других. Ему посвящены стихи, его изображают художники, о нем даже снят фильм. В нашей статье мы рассмотрим историю развития и вычисления, а также области применения константы Пи в нашей жизни.

Число Пи – это математическая константа равная отношению длины окружности к длине ее диаметра. Первоначально оно называлось лудольфово числом, а обозначать его буквой Пи было предложено британским математиком Джонсом в 1706 году. После работ Леонарда Эйлера в 1737 году это обозначение стало общепринятым.

Число Пи является иррациональным, то есть его значение не может быть точно выражено в виде дроби m/n, где m и n — целые числа. Впервые это доказал Иоганн Ламберт в 1761 году.

История развития числа Пи насчитывает уже порядка 4000 лет. Еще древнеегипетским и вавилонским математикам было известно, что отношение длины окружности к диаметру одинаково для любой окружности и значение его равно чуть больше трех.

Архимед предложил математический способ вычисления Пи, в котором он вписывал в окружность и описывал около неё правильные многоугольники. По его расчетам Пи примерно равнялась 22/7 ≈ 3,142857142857143.

Во II веке Чжан Хэн  предложил два значения числа Пи: ≈ 3,1724 и ≈ 3,1622.

Индийские математики Ариабхата и Бхаскара нашли приблизительное значение 3,1416.

Самым точным приближением числа Пи на протяжении 900 лет было вычисление китайского математика Цзу Чунчжи, проведенное в 480-х годах. Он вывел, что Пи ≈ 355/113, и показал, что 3,1415926

До II тысячелетия было вычислено не более 10 цифр числа Пи. Лишь с развитием математического анализа, а особенно с открытием рядов, были осуществлены последующие крупные продвижения в вычислении константы.

В 1400-х годах Мадхава смог вычислить Пи=3,14159265359. Его рекорд удалось побить персидскому математику Аль-Каши в 1424 году. Он в своём труде «Трактат об окружности» привёл 17 цифр числа Пи, 16 из которых оказались верными.

Голландский математик Людольф ван Цейлен дошел в своих вычислениях до 20-ти чисел, отдав на это 10 лет жизни. После его смерти в его записях были обнаружены еще 15 цифр числа Пи. Он завещал, чтобы эти цифры были высечены на его надгробии.

С появлением компьютеров число Пи  на сегодняшний день насчитывает несколько триллионов знаков и это не предел. Но, как подмечено в книге «Fractals for the Classroom», при всей важности числа Пи «трудно найти сферы в научных расчетах, где потребовалось бы больше двадцати десятичных знаков».

В нашей жизни число Пи используется во многих научных областях. Физика, электроника, теория вероятностей, химия, строительство, навигация, фармакология - это лишь некоторые из них, которые просто невозможно представить себе без этого загадочного числа.

Число Пи. Чему равно число Пи?

1. Экспериментальный метод. Если число Пи это отношение длины окружности к её диаметру, то первый, пожалуй, самый очевидный способ нахождения нашей загадочной константы будет вручную произвести все измерения и вычислить число Пи по формуле π=l/d. Где l — длина окружности, а d – её диаметр. Все очень просто, необходимо лишь вооружится ниткой для определения длины окружности, линейкой для нахождения диаметра, и, собственно, длины самой нитки, ну и калькулятором, если у вас проблемы с делением в столбик. В роли измеряемого образца может выступить кастрюля или банка из под огурцов, неважно, главное? чтоб в основании была окружность.

Рассмотренный способ вычисления самый простой, но, к сожалению, имеет два существенных недостатка, отражающихся на точности полученного числа Пи. Во-первых, погрешность измерительных приборов (в нашем случае это линейка с ниткой), а во-вторых, нет никакой гарантии, что измеряемая нами окружность будет иметь правильную форму. Поэтому не удивительно, что математика подарила нам множество других методов вычисления π, где нет нужды производить точные измерения.

2. Ряд Лейбница. Существует несколько бесконечных рядов, позволяющих точно вычислять число Пи до большого количества знаков после запятой. Одним из самых простых рядов является ряд Лейбница. π = (4/1) – (4/3) + (4/5) – (4/7) + (4/9) – (4/11) + (4/13) – (4/15) …
Все просто: берем дроби с 4 в числителе (это то что сверху) и одним числом из последовательности нечетных чисел в знаменателе (это то что снизу), последовательно складываем и вычитаем их друг с другом и получаем число Пи. Чем больше итераций или повторений наших нехитрых действий, тем точнее результат. Просто, но не эффективно, к слову, необходимо 500000 итераций чтоб получить точное значение числа Пи с десятью знаками после запятой. То есть, нам придется несчастную четверку разделить аж 500000 раз, а помимо этого полученные результаты мы должны будем 500000 раз вычитать и складывать. Хотите попробовать?

3. Ряд Нилаканта. Нет времени возится с рядом Лейбница? Есть альтернатива. Ряд Нилаканта, хотя он немного сложнее, но позволяет быстрее получить нам искомый результат. π = 3 + 4/(2*3*4) – 4/(4*5*6) + 4/(6*7*8) – 4/(8*9*10) + 4/(10*11*12) – (4/(12*13*14) … Думаю, если внимательно посмотреть на приведенный начальный фрагмент ряда, все становится ясным, и комментарии излишни. По этому идем дальше.

4. Метод «Монте-Карло» Довольно интересным методом вычисления числа Пи является метод Монте Карло. Столь экстравагантное название ему досталось в честь одноименного города в королевстве Монако. И причина тому случайность. Нет, его не назвали случайно, просто в основе метода лежат случайные числа, а что может быть случайней чисел, выпадающих на рулетках казино Монте Карло? Вычисление числа Пи не единственное применение этого метода, так в пятидесятых годах его использовали при расчетах водородной бомбы. Но не будем отвлекаться.

Возьмем квадрат со стороной, равной 2r , и впишем в него круг радиусом r . Теперь если наугад ставить точки в квадрате, То вероятность P того, что точка угодит в круг, есть отношение площадей круга и квадрата. P=Sкр/Sкв=2πr2/(2r)2=π/4 .

Теперь отсюда выразим число Пи π=4P . Остается только получить экспериментальные данные и найти вероятность Р как отношение попаданий в круг Nкр к попаданиям в квадрат Nкв . В общем виде расчетная формула будет выглядеть следующим образом: π=4Nкр/ Nкв.

Хочется отметить, что для того, чтобы реализовать этот метод, в казино идти необязательно, достаточно воспользоваться любым более или менее приличным языком программирования. Ну а точность полученных результатов будет зависеть от количества поставленных точек, соответственно, чем больше, тем точнее. Желаю удачи