Получена "Невозможная" форма материи - сверхтвердая супержидкость.
Используя лазеры для манипуляций сверхтекучим квантовым газом, известным как конденсат бозе - Эйнштейна, ученые - физики из массачусетского технологического института поместили этот конденсат в такое квантовое состояние, в котором он имеет твердую кристаллическую структуру, сохранив, при этом, свое изначальное свойство супержидкости, жидкости, имеющей нулевое значение коэффициента вязкости.
Дальнейшие исследования этого невозможного состояния материи могут привести к прорывам в областях практического использования сверхпроводников, супержидкостей, магнитов новых типов и датчиков, измеряющих значения различных физических величин.
"Было Очень Парадоксально Получить Материал, в Котором Комбинируются Свойства Супержидкости и Твердость" - рассказывает профессор Вольфганг кеттерле (Wolfgang Ketterle), руководитель научной группы.
Лишь в том случае, если бы ваш кофе был супержидким, он продолжил бы вращаться бесконечно долгое время после того, как вы помешали его в чашке ложкой. А в данном случае он еще продолжил бы вращаться без изменений, превратившись бы в лед внутри морозильной камеры".
Ученые - физики теоретически обосновали возможность существования супертвердых частиц уже достаточно давно, но такое состояние материи еще ни разу не было получено ни в одной из лабораторий.
С теоретической точки зрения это должно было выглядеть следующим образом - гелий, охлажденный до твердого состояния, должен был подвергнуться воздействию, заставляющему его атомы сместиться внутри кристаллической решетки на определенную величину друг относительно друга. И в какой-то момент такой гелий снова обрел бы свойства супержидкости одновременно со свойствами супертвердости.
Ученые использовали комбинацию методов лазерного испарения и охлаждения для того, чтобы получить разреженный газ атомов натрия, охлажденных до температуры в несколько нанокельвинов, т. е. максимально близко к температуре абсолютного нуля.
И, в определенный момент, это облаков приобрело состояние конденсата бозе - Эйнштейна, сверхтекучее состояние при котором весь конденсат ведет себя словно один большой квантовый объект.
Для того, чтобы вызвать появление супертвердого состояния полученного конденсата бозе - Эйнштейна, ученые использовали метод лазерного управления и сцепления спинов (Spin - Orbit Coupling.
Половина атомов конденсата была помещена в одно квантовое состояние, определяемое направлением их вращения (спином), а вторая часть атомов - в другое квантовое состояние.
При помощи света дополнительных лазеров ученые заставили атомы одной части конденсата бозе - Эйнштейна обмениваться своим спином с атомами второй части конденсата.
В результате этого образовалось спиновое сцепление двух частей конденсата бозе - Эйнштейна, и, согласно имеющимся теориям, такой конденсат должен был стать супертелом из-за явления прямой "Модуляции Плотности".
Плотность супертела не является постоянной величиной, как у кристаллического тела, в объеме супертела возникают уплотнения, называемые "Полосовыми Фазами", распространяющиеся словно волны.
Самой тяжелой задачей, с которой пришлось столкнуться ученым, стало прямое наблюдение "Модуляций Плотности", которое было произведено при помощи луча света дополнительного лазера.
"Получить Супертело Оказалось Достаточно Просто" - рассказывает джанру ли (Junru Li), один из исследователей, - "гораздо трудней решить проблему точного выравнивания всех лазерных лучей и обеспечить их синхронизацию с лучами, производящими наблюдений за полосовой фазой материи".
В настоящее время материя в состоянии супертела может существовать только при чрезвычайно низкой температуре в очень глубоком вакууме.
Однако ученые уже запланировали эксперименты по новой методике, которые будут проводиться при несколько иных условиях, что поможет им глубже разобраться в строении супертел, в основах явления спинового сцепления и других вещах, которые в будущем можно будет поставить на службу людям. Технологии@Science_Newworld.