Наука для всех простыми словами

Самый лучший сайт c познавательной информацией.

Как появилась Вселенная. Как появилась наша вселенная?

06.01.2016 в 15:29

Как появилась Вселенная. Как появилась наша вселенная?

Как она в кажущееся на первый взгляд бесконечное пространство превратилась? И чем она спустя многие миллионы и миллиарды лет станет? Эти вопросы терзали (и продолжают терзать) умы философов и ученых, кажется, еще с начала времен, породив при этом множество интересных и порой даже безумных теорий

Как появилась Вселенная. Как появилась наша вселенная?. Сегодня большинство астрономов и космологов пришли к общему согласию относительно того, что вселенная, которую мы знаем, появилась в результате гигантского взрыва, породившего не только основную часть материи, но явившегося источником основных физических законов, согласно которым существует тот космос, который нас окружает. Все это называется теорией большого взрыва.

Основы теории большого взрыва относительно просты. Таким образом, если кратко, согласно ей вся существовавшая и существующая сейчас во вселенной материя появилась в одно и то же время - около 13, 8 миллиарда лет назад. В тот момент времени вся материя существовала в виде очень компактного абстрактного шара (или точки) с бесконечной плотностью и температурой. Это состояние носило название сингулярности. Неожиданно сингулярность начала расширяться и породила ту вселенную, которую мы знаем.

Стоит отметить, что теория большого взрывая является лишь одной из многих предложенных гипотез возникновения вселенной (например, есть еще теория стационарной вселенной), однако она получила самое широкое признание и популярность. Она не только объясняет источник всей известной материи, законов физики и большую структуру вселенной, она также описывает причины расширения вселенной и многие другие аспекты и феномены.

Хронология событий в теории большого взрыва.

Основываясь на знаниях о нынешнем состоянии вселенной, ученые предполагают, что все должно было начаться с единственной точки с бесконечной плотностью и конечным временем, которые начали расширяться. После первоначального расширения, как гласит теория, вселенная прошла фазу охлаждения, которая позволила появиться субатомным частицам и позже простым атомам. Гигантские облака этих древних элементов позже, благодаря гравитации, начали образовывать звезды и галактики.

Все это, по догадкам ученых, началось около 13, 8 миллиарда лет назад, и поэтому эта отправная точка считается возрастом вселенной. Путем исследования различных теоретических принципов, проведения экспериментов с привлечением ускорителей частиц и высокоэнергетических состояний, а также путем проведения астрономических исследований дальних уголков вселенной ученые вывели и предложили хронологию событий, которые начались с большого взрыва и привели вселенную в конечном итоге к тому состоянию космической эволюции, которое имеет место быть сейчас.

Ученые считают, что самые ранние периоды зарождения вселенной - продлившиеся от 10-43 до 10-11 секунды после большого взрыва, - по прежнему являются предметом споров и обсуждений. Внимание! Только в том случае, если учесть, что те законы физики, которые нам сейчас известны, не могли существовать в это время, то очень сложно понять, каким же образом регулировались процессы в этой ранней вселенной. Кроме того, экспериментов с использованием тех возможных видов энергий, которые могли присутствовать в то время, до сих пор не проводилось. Как бы там ни было, многие теории о возникновении вселенной в конечном итоге согласны с тем, что в какой-то период времени имелась отправная точка, с которой все началось.

Эпоха сингулярности.

Также известная как планковская эпоха (или планковская эра) принимается за самый ранний из известных периодов эволюции вселенной. В это время вся материя содержалась в единственной точке бесконечной плотности и температуры. Во время этого периода, как считают ученые, квантовые эффекты гравитационного взаимодействия доминировали над физическим, и ни одна из физических сил не была равна по силе гравитации.

Планковская эра предположительно длилась от 0 до 10-43 секунды и названа она так потому, что измерить ее продолжительность можно только планковским временем. Ввиду экстремальных температур и бесконечной плотности материи состояние вселенной в этот период времени было крайне нестабильным. После этого произошли периоды расширения и охлаждения, которые привели к возникновению фундаментальных сил физики.

Приблизительно в период с 10-43 до 10-36 секунды во вселенной происходил процесс столкновения состояний переходных температур. Считается, что именно в этот момент фундаментальные силы, которые управляют нынешней вселенной, начали отделяться друг от друга. Первым шагом этого отделения явилось появление гравитационных сил, сильных и слабых ядерных взаимодействий и электромагнетизма.

В период примерно с 10-36 до 10-32 секунды после большого взрыва температура вселенной стала достаточно низкой (1028 к), что привело к разделению электромагнитных сил (сильное взаимодействие) и слабого ядерного взаимодействия (слабого взаимодействия.

Эпоха инфляции.

С появлением первых фундаментальных сил во вселенной началась эпоха инфляции, которая продлилась с 10-32 секунды по планковскому времени до неизвестной точки во времени. Большинство космологических моделей предполагают, что вселенная в этот период была равномерно заполнена энергией высокой плотности, а невероятно высокие температура и давление привели к ее быстрому расширению и охлаждению.

Это началось на 10-37 секунде, когда за фазой перехода, вызвавшей отделение сил, последовало расширение вселенной в геометрической прогрессии. В этот же период времени вселенная находилась в состоянии бариогенезиса, когда температура была настолько высокой, что беспорядочное движение частиц в пространстве происходило с околосветовой скоростью.

В это время образуются и сразу же сталкиваясь разрушаются пары из частиц - античастиц, что, как считается, привело к доминированию материи над антиматерией в современной вселенной. После прекращения инфляции вселенная состояла из кварк - глюоновой плазмы и других элементарных частиц. С этого момента вселенная стала остывать, начала образовываться и соединяться материя.

Эпоха охлаждения.

Со снижением плотности и температуры внутри вселенной начало происходить и снижение энергии в каждой частице. Это переходное состояние длилось до тех пор, пока фундаментальные силы и элементарные частицы не пришли к своей нынешней форме. Так как энергия частиц опустилась до значений, которые можно сегодня достичь в рамках экспериментов, действительное возможное наличие этого временного периода вызывает у ученых куда меньше споров.

Например, ученые считают, что на 10-11 секунде после большого взрыва энергия частиц значительно уменьшилась. Примерно на 10-6 секунде кварки и глюоны начали образовывать барионы - протоны и нейтроны. Кварки стали преобладать над антикварками, что в свою очередь привело к преобладанию барионов над антибарионами.

Так как температура была уже недостаточно высокой для создания новых протонно - антипротонных пар (или нейтронно - антинейтронных пар), последовало массовое разрушение этих частиц, что привело к остатку только 1/1010 количества изначальных протонов и нейтронов и полному исчезновению их античастиц. Аналогичный процесс произошел спустя около 1 секунды после большого взрыва. Только "Жертвами" на этот раз стали электроны и позитроны. После массового уничтожения оставшиеся протоны, нейтроны и электроны прекратили свое беспорядочное движение, а энергетическая плотность вселенной была заполнена фотонами и в меньшей степени нейтрино.

В течение первых минут расширения вселенной начался период нуклеосинтеза (синтез химических элементов. Благодаря падению температуры до 1 миллиарда кельвинов и снижения плотности энергии примерно до значений, эквивалентных плотности воздуха, нейтроны и протоны начали смешиваться и образовывать первый стабильный изотоп водорода (дейтерий), а также атомы гелия. Тем не менее большинство протонов во вселенной остались в качестве несвязных ядер атомов водорода.

Спустя около 379 000 лет электроны объединились с этими ядрами водорода и образовали атомы (опять же преимущественно водорода), в то время как радиация отделилась от материи и продолжила практически беспрепятственно расширяться через пространство. Эту радиацию принято называть реликтовым излучением, и она является самым древнейшим источником света во вселенной.

С расширением реликтовое излучение постепенно теряло свою плотность и энергию и в настоящий момент его температура составляет 2, 7260 0, 0013 к ( - 270, 424 C), а энергетическая плотность 0, 25 эВ (или 4, 005x10-14 Дж/м? ; 400-500 Фотонов/см. Реликтовое излучение простирается во всех направлениях и на расстояние около 13, 8 миллиарда световых лет, однако оценка его фактического распространения говорит примерно о 46 миллиардах световых годах от центра вселенной.

Эпоха структуры (иерархическая эпоха).

В последующие несколько миллиардов лет более плотные регионы почти равномерно распределенной во вселенной материи начали притягиваться друг к другу. В результате этого они стали еще плотнее, начали образовывать облака газа, звезды, галактики и другие астрономические структуры, за которыми мы можем наблюдать в настоящее время. Этот период название иерархической эпохи носит. В это время та вселенная, которую мы видим сейчас, начала приобретать свою форму. Материя начала объединяться в структуры различных размеров - звезды, планеты, галактики, галактические скопления, а также галактические сверхскопления, разделенные межгалактическими перемычками, содержащими всего лишь несколько галактик.

Детали этого процесса могут быть описаны согласно представлению о количестве и типе материи, распределенной во вселенной, которая представлена в виде холодной, теплой, горячей темной материи и барионного вещества. Однако современной стандартной космологической моделью большого взрыва является модель лямбда - CDM, согласно которой частицы темной материи двигаются медленнее скорости света. Выбрана она была потому, что решает все противоречия, которые появлялись в других космологических моделях.

Согласно этой модели на холодную темную материю приходится около 23 процентов всей материи/энергии во вселенной. Доля барионного вещества составляет около 4, 6 процента. Лямбда - CDM ссылается на так называемую космологическую постоянную: теорию, предложенную Альбертом Эйнштейном, которая характеризует свойства вакуума и показывает соотношение баланса между массой и энергией как постоянную статичную величину. В этом случае она связана с темной энергией, которая служит в качестве акселератора расширения вселенной и поддерживает гигантские космологические структуры в значительной степени однородными.

Долгосрочные прогнозы относительно будущего вселенной.

Гипотезы относительно того, что эволюция вселенной обладает отправной точкой, естественным способом подводят ученых к вопросам о возможной конечной точке этого процесса. Только в том случае, если вселенная начала свою историю из маленькой точки с бесконечной плотностью, которая вдруг начала расширяться, не означает ли это, что расширяться она тоже будет бесконечно или же однажды у нее закончится экспансивная сила и начнется обратный процесс сжатия, конечным итогом которого станет все та же бесконечно плотная точка?

Ответы на эти вопросы были основной целью космологов с самого начала споров о том, какая же космологическая модель вселенной является верной. С принятием теории большого взрыва, но по большей части благодаря наблюдению за темной энергией в 1990-х годах, ученые пришли к согласию в отношении двух наиболее вероятных сценариев эволюции вселенной.

Согласно первому, получившему название "Большое Сжатие", вселенная достигнет своего максимального размера и начнет разрушаться. Такой вариант развития событий будет возможен, если только плотность массы вселенной станет больше, чем сама критическая плотность. Другими словами, если плотность материи достигнет определенного значения или станет выше этого значения (1-3x10-26 кг материи на м), вселенная начнет сжиматься.

Альтернативой служит другой сценарий, который гласит, что если плотность во вселенной будет равна или ниже значения критической плотности, то ее расширение замедлится, однако никогда не остановится полностью. Согласно этой гипотезе, получившей название "Тепловая Смерть Вселенной", расширение продолжится до тех пор, пока звездообразования не перестанут потреблять межзвездный газ внутри каждой из окружающих галактик. То есть полностью прекратится передача энергии и материи от одного объекта к другому. Все существующие звезды в этом случае выгорят и превратятся в белых карликов, нейтронные звезды и черные дыры.

Постепенно черные дыры будут сталкиваться с другими черными дырами, что привет к образованию все более и более крупных. Средняя температура вселенной приблизится к абсолютному нулю. Черные дыры в итоге "Испарятся", выпустив свое последнее излучение хокинга. В конце концов термодинамическая энтропия во вселенной максимальной станет. Тепловая смерть наступит.

Современные наблюдения, которые учитывают наличие темной энергии и ее влияние на расширение космоса, натолкнули ученых на вывод, согласно которому со временем все больше и больше пространства вселенной будет проходить за пределами нашего горизонта событий и станет невидимым для нас. Конечный и логичный результат этого ученым пока не известен, однако "Тепловая Смерть" вполне может оказаться конечной точкой подобных событий.

Есть и другие гипотезы относительно распределения темной энергии, а точнее, ее возможных видов (например фантомной энергии. Согласно им галактические скопления, звезды, планеты, атомы, ядра атомов и материя сама по себе будут разорваны на части в результате ее бесконечного расширения. Такой сценарий эволюции носит название "Большого Разрыва". Причиной гибели вселенной согласно этому сценарию является само расширение.

История теории большого взрыва.

Самое раннее упоминание большого взрыва относится к началу 20-го века и связано с наблюдениями за космосом. В 1912 году американский астроном весто слайфер провел серию наблюдений за спиральными галактиками (которые изначально представлялись туманностями) и измерил их доплеровское красное смещение. Почти во всех случаях наблюдения показали, что спиральные галактики отдаляются от нашего млечного пути.

В 1922 году выдающийся российский математик и космолог Александр Фридман вывел из уравнений Эйнштейна для общей теории относительности так называемые уравнения Фридмана. Несмотря продвижения Эйнштейном теории в пользу наличия космологической постоянной, работа Фридмана показала, что вселенная скорее находится в состоянии расширения.

В 1924 году измерения Эдвина хаббла дистанции до ближайшей спиральной туманности показали, что эти системы на самом деле являются действительно другими галактиками. В то же время хаббл приступил к разработке ряда показателей для вычета расстояния, используя 2, 5-метровый телескоп хукера в обсерватории маунт Вилсон. К 1929 году хаббл обнаружил взаимосвязь между расстоянием и скоростью удаления галактик, что впоследствии стало законом хаббла.

В 1927 году бельгийский математик, физик и католический священник Жорж леметр независимо пришел к тем же результатам, какие показывали уравнения Фридмана, и первым сформулировал зависимость между расстоянием и скоростью галактик, предложив первую оценку коэффициента этой зависимости. Леметр считал, что в какой-то период времени в прошлом вся масса вселенной была сосредоточена в одной точке (атоме.

Эти открытия и предположения вызывали много споров между физиками в 20-х и 30-х годах, большинство из которых считало, что вселенная находится в стационарном состоянии. Согласно устоявшейся в то время модели, новая материя создается наряду с бесконечным расширением вселенной, равномерно и равнозначно по плотности распределяясь на всей ее протяженности. Среди ученых, поддерживающих ее, идея большого взрыва казалась больше теологической, нежели научной. В адрес леметра звучала критика о предвзятости на основе религиозных предубеждений.

Следует отметить, что в то же время существовали и другие теории. Например, модель вселенной Милна и циклическая модель. Обе основывались на постулатах общей теории относительности Эйнштейна и впоследствии получили поддержку самого ученого. Согласно этим моделям вселенная существует в бесконечном потоке повторяющихся циклов расширений и коллапсов.

Как появилась Вселенная кратко. Эпохальный период становления

Как появилась Вселенная кратко. Эпохальный период становления 1. Эпоха сингулярности (планковская). Ее принято считать первичной, в качестве раннего эволюционного периода Вселенной. Материя была сосредоточена в одной точке, имеющей свою температуру и бесконечную плотность. Ученые утверждают, что эта эпоха характерна для доминирования квантовых эффектов, принадлежащих гравитационному взаимодействию над физическими, причем ни одна физическая сила из всех существовавших в те далекие времена по своей силе не была идентична гравитации, то есть не была ей равна. Время продолжительности планковской эры сосредотачивается в интервале от 0 до 10-43 секунды. Она получила такое название по причине того, что полноценно измерить ее протяженность смогло лишь планковское время. Этот временной интервал считается очень нестабильным, что в свою очередь тесным образом связано с экстремальной температурой и безграничной плотностью материи. Следом за эпохой сингулярности произошел период расширения, а вместе с ним и охлаждения, приведшие к формированию основных физических сил.

Как зарождалась Вселенная. Холодное рождение

Однако пути к подобному объединению можно обдумать на качественном уровне, и здесь появляются весьма интересные перспективы. Одну из них рассмотрел известный космолог, профессор Аризонского университета Лоуренс Краусс в своей недавно изданной книге «A Universe From Nothing» («Вселенная из ничего»). Его гипотеза выглядит фантастической, но отнюдь не противоречит установленным законам физики.

Считается, что наша Вселенная возникла из очень горячего начального состояния с температурой порядка 1032 кельвинов. Однако возможно представить и холодное рождение вселенных из чистого вакуума — точнее, из его квантовых флуктуаций. Хорошо известно, что такие флуктуации порождают великое множество виртуальных частиц, буквально возникших из небытия и впоследствии бесследно исчезнувших. Согласно Крауссу, вакуумные флуктуации в принципе способны давать начало столь же эфемерным протовселенным, которые при определенных условиях переходят из виртуального состояния в реальное.

Что было до Вселенной. Модель «Спящей» Вселенной

«Возможно, до Большого взрыва Вселенная представляла собой некое очень компактное, медленно эволюционирующее статичное пространство», — теоретизируют такие физики, как Курт Хинтербихлер, Остин Джойс и Джастин Хури.

Эта «предвзрывная» Вселенная должна была обладать метастабильным состоянием, то есть быть стабильной до того момента, пока не появится еще более стабильное состояние. По аналогии представьте обрыв, на краю которого в состоянии вибрации находится валун. Любое касание до валуна приведет к тому, что он сорвется в пропасть или — что ближе к нашему случаю – произойдет Большой взрыв. Согласно некоторым теориям «предвзрывная» Вселенная могла существовать в ином виде, например, в форме сплюснутого и очень плотного пространства. В итоге этот метастабильный период подошел к концу: она резко расширилась и приобрела форму и состояние того, что мы видим сейчас.

«В модели «спящей» Вселенной, однако, тоже имеются свои проблемы», — говорит Кэрролл.

«Она тоже предполагает наличие у нашей Вселенной появления низкого уровня энтропии и при этом не объясняет, почему это так».

Однако Хинтербихлер, физик-теоретик из Университета Кейс Вестерн Резерв, не считает появление низкого уровня энтропии проблемой.

«Мы просто ищем объяснение динамики, происходившей до Большого взрыва, которая объясняет, почему мы видим то, что мы видим сейчас. Пока это лишь единственное, что нам остается», — говорит Хинтербихлер.

Кэрролл, тем не менее, считает, что есть еще одна теория «предвзрывной» Вселенной, которая способна объяснить низкий уровень энтропии, имеющийся в нашей Вселенной.

Как появилась Вселенная из ничего. Как работает Вселенная

Поговорим о том, как на самом деле устроена физика, по нашим понятиям. Со времён Ньютона парадигма фундаментальной физики не менялась; в неё входит три части. Первое – «пространство состояний»: по сути, список всех возможных конфигураций, в которых может находиться Вселенная. Второе — определённое состояние, представляющее Вселенную в какой-то момент времени, обычно в текущий. Третье – некое правило, по которому Вселенная развивается во времени. Дайте мне Вселенную на сегодня, и законы физики скажут, что станет с ней в будущем. Такой способ мышления не менее верен для квантовой механики или ОТО или квантовой теории поля, чем для ньютоновой механики или максвелловской электродинамики.

Квантовая механика, в частности — особенная, но очень многосторонняя реализация этой схемы. (Квантовая теория поля – просто определённый пример квантовой механики, а не новый способ мышления). Состояния – это «волновые функции», а набор всех возможных волновых функций определённой системы называется “ гильбертовым пространством “. Его преимущество в том, что оно сильно ограничивает набор возможностей (потому что это векторное пространство: замечание для экспертов). Как только вы сообщите мне его размер (количество измерений), вы полностью определите ваше Гильбертово пространство. Это кардинально отличается от классической механики, в которой пространство состояний может стать чрезвычайно сложным. А ещё есть машинка – “ гамильтониан ” – указывающая, как именно развиваться из одного состояния в другое с течением времени. Повторюсь, что разновидностей гамильтонианов бывает не много; достаточно записать определённый список величин (собственных значений энергии – уточнение для вас, надоедливые эксперты).

Как появилась жизнь на Земле. Жизнь на Земле

Жизнь, использующая химию, отличную от нашей, может возникнуть на Земле более одного раза. Возможно. И если мы найдем доказательства наличия такого процесса, это означает, что существует большая вероятность, что жизнь будет возникать во многих местах Вселенной независимо друг от друга, также как возникла жизнь на Земле . Но с другой стороны, представьте, что мы почувствуем, если в конце концов обнаружим жизнь на другой планете, возможно, вращающейся вокруг далекой звезды, и окажется, что она имеет идентичную химию и, возможно, даже идентичную нашей структуру ДНК .

Шансы на то, что жизнь на Земле возникла абсолютно самопроизвольно и случайно кажутся очень небольшими. Шансы возникновения точно такой же жизни в другом месте невероятно малы, и практически равны нулю. Но на эти вопросы есть возможные ответы, которые английские астрономы Фред Хойл и Чандра Викрамасингхе изложили в своей необычной книге, написанной в 1979 году — « Life cloud» .

Учитывая крайне маловероятный шанс, что жизнь на Земле появилась сама по себе, авторы предлагают другое объяснение. Оно заключается в том, что появление жизни произошло где-то в космосе, а затем распространилась по всей Вселенной посредством панспермии . Микроскопическая жизнь, застрявшая в мусоре, возникшем в результате космических столкновений, может путешествовать, находясь в неактивном состоянии в течение очень долгого времени. После чего, когда она прибудет в пункт назначения, где снова начнет развиваться. Таким образом, вся жизнь во Вселенной, в том числе и жизнь на Земле, на самом деле является одной и той же жизнью.

Видео Как появилась Вселенная

Как появилась Вселенная из ничего. Холодное рождение

Однако пути к подобному объединению можно обдумать на качественном уровне, и здесь появляются весьма интересные перспективы. Одну из них рассмотрел известный космолог, профессор Аризонского университета Лоуренс Краусс в своей недавно изданной книге «A Universe From Nothing» («Вселенная из ничего»). Его гипотеза выглядит фантастической, но отнюдь не противоречит установленным законам физики.

Считается, что наша Вселенная возникла из очень горячего начального состояния с температурой порядка 1032 кельвинов. Однако возможно представить и холодное рождение вселенных из чистого вакуума — точнее, из его квантовых флуктуаций. Хорошо известно, что такие флуктуации порождают великое множество виртуальных частиц, буквально возникших из небытия и впоследствии бесследно исчезнувших. Согласно Крауссу, вакуумные флуктуации в принципе способны давать начало столь же эфемерным протовселенным, которые при определенных условиях переходят из виртуального состояния в реальное.

Как появилась Вселенная для детей. Как появилась Вселенная?

Вопрос о том, как появилась Вселенная, всегда волновал людей. Это и не удивительно, ведь каждому хочется знать свои истоки. Над этим вопросом уже несколько тысячелетий бьются ученые, священники и писатели. Этот вопрос будоражит умы не только специалистов, но и каждого простого человека. Однако сразу стоит сказать, что стопроцентного ответа на вопрос о том, как появилась Вселенная, нет. Есть только теория, которую поддерживает большинство ученых.

  • Вот ее мы и разберем.

Поскольку все, что окружает человека, имеет свое начало, то не удивляет тот факт, что с древних времен человек пытался найти начало Вселенной. У человека эпохи Средневековья ответ на этот вопрос был достаточно прост – Вселенную создал Бог. Однако с развитием науки ученые начали подвергать сомнению не только вопрос о Боге, но и вообще о том, что Вселенная имеет начало.

В 1929 году благодаря американскому астроному Хабблу ученые вернулись к вопросу о корнях Вселенной. Дело в том, что Хаббл доказал, что галактики, из которых состоит Вселенная, постоянно двигаются. Кроме движения они еще и могут увеличиваться, а значит, увеличивается и Вселенная. А если она растет, выходит так, что был когда-то этап старта этого роста. А это означает, что у Вселенной есть начало.

Чуть позже уже британский астроном Хойл выдвинул сенсационную гипотезу: Вселенная возникла в момент Большого Взрыва . Его теория так и вошла в историю под таким названием. Суть идеи Хойла проста и сложна одновременно. Он считал, что когда-то существовал этап, который называют состоянием космической сингулярности, то есть время стояло на отметке нуль, а плотность и температура равнялись бесконечности. И в один момент случился взрыв, в результате которого нарушилась сингулярность, а следовательно плотность и температура изменились, начался рост материи, а значит время начало свой отчет. Позже сам Хойл назвал свою теорию малоубедительной, однако это не помешало ей стать самой популярной гипотезой происхождения Вселенной.

Как появилась Вселенная для детей. Как появилась Вселенная?

Когда случилось то, что Хойл назвал Большим Взрывом? Ученые проводили множество расчетов, в результате большинство сошлось на цифре 13,5 миллиардов лет. Именно тогда из ничего начала появляться  Всего за долю секунды Вселенная приобрела размер меньше атома, и процесс разрастания был запущен. Ключевую роль сыграла гравитация. Самое интересное, что если бы она была чуть сильнее, то ничего бы не возникло, максимум черная дыра. А если бы гравитация была немного слабее, то ничего бы не возникло вообще.
Через несколько секунд после Взрыва температура во Вселенной немного уменьшилась, что дало толчок созданию вещества и антивещества. В результате начали появляться атомы. Так Вселенная перестала быть однотонной. Где-то атомов было больше, где-то меньше. В одних частях было горячее, в других температура была ниже. Атомы начали сталкиваться друг с другом, образовывая соединения, затем новые вещества, а позже тела. Часть объектов обладала большой внутренней энергией. Это были звезды. Они начали собирать вокруг себя (благодаря силе притяжения) другие тела, которые мы называем планетами. Так возникли системы, одной из которых является наша Солнечная.

Большой взрыв. Проблемы модели и их разрешение

  1. Проблема крупномасштабности и изотропности Вселенной может быть разрешена благодаря тому, что на стадии инфляции расширение происходило необычайно высокими темпами. Из этого следует, что всё пространство наблюдаемой Вселенной – результат одной причинно-связанной области эпохи, предшествующей инфляционной.
  2. Разрешение проблемы плоской Вселенной. Это возможно потому, что на стадии инфляции происходит увеличение радиуса кривизны пространства. Эта величина такова, что позволяет современным параметрам плотности иметь значение, близкое к критическому.
  3. Инфляционное расширение ведёт к возникновению колебаний плотности с определённой амплитудой и формой спектра. Это даёт возможность развития этих колебаний (флуктуаций) в нынешнюю структуру Вселенной, сохраняя крупномасштабную однородность и изотропность. Это разрешение проблемы крупномасштабной структуры Вселенной.

Основным недостатком инфляционной модели можно считать её зависимость от теорий, которые ещё не доказаны и разработаны не до конца.

 Например, модель базируется на теории единого поля, которая пока является просто гипотезой. Её невозможно проверить экспериментально в лабораторных условиях. Ещё один недостаток модели – непонятность, откуда взялась перегретая и расширяющаяся материя. Здесь рассматриваются три возможности:

  1. Стандартная теория Большого взрыва предполагает начало инфляции на самой ранней стадии эволюции Вселенной. Но тогда не разрешается проблема сингулярности.
  2. Вторая возможность – возникновение Вселенной из хаоса. Разные участки её имели различную температуру, поэтому в одних местах происходило сжатие, а в других – расширение. Инфляция должна была возникнуть в области Вселенной, которая была перегрета и расширялась. Но не ясно, откуда взялся первичный хаос.
  3. Третий вариант – квантово-механический путь, посредством которого возник сгусток перегретой и расширяющейся материи. Фактически, Вселенная возникла из ничего.