Наука для всех простыми словами

Самый лучший сайт c познавательной информацией.

Иллюзия гравитации. ( Наука@Science_Newworld).

14.11.2015 в 14:29

Возможно, сила тяготения и одно из пространственных измерений возникают в результате взаимодействия частиц и полей, существующих в трехмерном мире.

Всем нам хорошо знакомы три пространственных измерения: вверх-вниз, влево - вправо и вперед - назад. Четырехмерную комбинацию пространства и времени принято называть пространством - временем. Таким образом, мы живем в четырехмерной вселенной. Так ли это?

Иллюзия гравитации.  ( Наука@Science_Newworld).
Согласно новейшим физическим теориям одно из трех пространственных измерений - лишь иллюзия, и все частицы и поля, из которых состоит окружающая действительность, на самом деле перемещаются в двумерном пространстве, похожем на флатландию Эдвина эбботта. В этом плоском мире нет и силы тяготения, которая возникает лишь вместе с иллюзорным третьим измерением.

Точнее говоря, из этих теорий следует, что есть несколько правомерных ответов на вопрос о числе измерений: можно описывать действительность и как трехмерное пространство, в котором действуют законы природы, учитывающие гравитацию, и как двумерное, в котором справедливы совершенно другие законы и нет сил тяготения. Несмотря на радикальные различия, оба описания могли бы полностью соответствовать результатам всех наших наблюдений, и нельзя было бы определить, какое из них следует считать "Действительно" истинным.

Нечто похожее мы можем наблюдать и в повседневной жизни. Голограмма - плоский объект, но если рассматриваем ее при правильном освещении, то можно увидеть полностью трехмерное изображение объекта, информация о котором закодирована на двумерной поверхности. Точно так же согласно новым физическим теориям вся вселенная могла бы быть своего рода голограммой.

Голографическое описание - это не просто интеллектуально - философский курьез. Физические уравнения, чрезвычайно сложные при одном подходе, могут оказаться относительно простыми при другом, что позволит без особых усилий решить труднейшие проблемы современной физики. Например, голографические теории могут оказаться полезными при анализе последних экспериментальных результатов физики высоких энергий. Кроме того, они предлагают новый способ построения квантовой теории гравитации, которая объединит все силы природы и поможет физикам разобраться в том, что происходит в черных дырах и что происходило в первые наносекунды после большого взрыва.

Непростое объединение.

Для многих физиков квантовая теория гравитации - это чаша святого грааля, потому что вся физика за исключением сил тяготения прекрасно описывается квантовыми законами. Примерно 80 лет назад квантовая механика была разработана для описания частиц и сил в атомных и субатомных масштабах, при которых становятся существенными квантовые эффекты. В квантовых теориях у объектов нет определенных положений и скоростей, и все описывается вероятностями и волнами, занимающими определенные области пространства. В квантовом мире все пребывает в постоянном движении: даже "Пустое" пространство заполнено так называемыми виртуальными частицами, которые непрерывно возникают и исчезают.

Вместе с тем общая теория относительности (лучшая теория гравитации) является принципиально классической (то есть неквантовой. Великое творение Эйнштейна гласит, что вблизи любого сгустка вещества или энергии искривляется пространство - время, а вместе с ним и траектории частиц, которые словно оказываются в гравитационном поле. Общая теория относительности чрезвычайно стройна и красива, а многие ее предсказания проверены с величайшей точностью.

В классических теориях объекты имеют определенные положения и скорости, подобно планетам, обращающимся вокруг солнца. Зная координаты, скорости и массы, можно с помощью уравнений общей теории относительности вычислить искривления пространства - времени и определить влияние тяготения на траектории рассматриваемых тел. кроме того, пустое релятивистское пространство - время является идеально гладким независимо от того, насколько детально его исследуют. Оно представляет собой абсолютно ровную арену, на которой выступают вещество и энергия.

Проблема создания квантовой версии общей теории относительности не , внимание, только в том, что в масштабе атомов и электронов у частиц нет определенных положений и скоростей. В еще более малых масштабах, сопоставимых с длиной планка (~10-35 м), квантовое пространство - время должно представлять собой кипящую пену, море виртуальных частиц, заполняющее все пустое пространство. В условиях, когда вещество и пространство - время столь изменчивы, уравнения общей теории относительности теряют смысл. Таким образом, если мы предположим, что вещество повинуется законам квантовой механики, а гравитация подчиняется общей теории относительности, то столкнемся с математическими противоречиями. Поэтому - то и необходима квантовая теория гравитации.

В большинстве ситуаций противоречивые требования квантовой механики и общей теории относительности не представляют проблемы, поскольку или квантовые, или гравитационные эффекты оказываются настолько малыми, что ими можно пренебречь. Однако при сильном искривлении пространства - времени становятся существенными квантовые аспекты гравитации. Чтобы создать большое искривление пространства - времени требуется очень большая масса или большая ее концентрация. Даже солнце не способно настолько искривить пространство - время, чтобы проявления квантовых эффектов гравитации стали очевидными.

Хотя в настоящее время квантовые эффекты пренебрежимо малы, они играли важнейшую роль на начальных стадиях большого взрыва. Ими же определяются процессы, протекающие в черных дырах. Поскольку гравитация связана с искривлением пространства - времени, квантовая теория гравитации будет теорией квантового пространства - времени. Она поможет физикам понять, из чего состоит пространственно-временная пена, упомянутая ранее.

Многообещающий подход к квантовой теории гравитации - теория струн, которую физики - теоретики разрабатывают с 1970-х годов. С ее помощью удается устранить некоторые препятствия, мешающие построить логически последовательную квантовую теорию гравитации. Однако теория струн все еще в стадии разработки: физикам пока неизвестны ни ее точные уравнения, ни фундаментальные принципы, определяющие их форму. Кроме того, есть целый ряд физических величин, значения которых невозможно вывести из имеющихся уравнений.

Недавно появилось первое полное, логически последовательное квантовое описание гравитации в отрицательно искривленном пространстве - времени, для которого голографические теории верны.

В хорошо нам знакомой евклидовой геометрии пространство является плоским (т. е. не искривленным. В известной степени это справедливо и для окружающего нас мира: параллельные линии никогда не пересекаются, и выполняются все остальные аксиомы Евклида. Нам также знакомы и изогнутые пространства. Искривление может быть положительным и отрицательным. Самое простое пространство с положительной кривизной - это поверхность сферы, которая имеет постоянную положительную кривизну, т. е. одинаково искривлена в каждой точке (в отличие, скажем, от яйца, которое на остром конце имеет большую кривизну.

Самое простое пространство с постоянной отрицательной кривизной называют гиперболическим. На одной из своих картин Мориц Эшер изобразил плоскую карту такого пространства. По краям рыбки становятся все меньше и меньше из-за того, что искривленное пространство деформируется при отображении на плоский лист бумаги. Точно также на карте земного шара страны растягиваются вблизи полюсов.

Подобным образом можно рассматривать и пространство - время с положительной или отрицательной кривизной. Самое простое пространство - время с положительной кривизной называют пространством де ситтера в честь голландского физика Виллема де ситтера, который ввел его в рассмотрение. Многие космологи полагают, что очень ранняя вселенная была близка к пространству де ситтера. В далеком будущем из-за космического ускорения она снова может стать похожей на него. Самое простое пространство - время с отрицательной кривизной называют анти - де ситтеровским пространством (или кратко - адс - пространством. Оно подобно гиперболическому, но также содержит ось времени. В отличие от нашей вселенной, которая расширяется, адс - пространство не расширяется, не сжимается и всегда выглядит одинаково. Тем не менее, оно оказывается весьма полезным при разработке квантовых теорий пространства - времени и гравитации.

В том случае, если мы изобразим гиперболическое пространство в виде диска, напоминающего рисунок Эшера, то адс - пространство будет похоже на стопку таких дисков, образующую сплошной цилиндр. Изменению времени соответствует движение вдоль цилиндра. Гиперболическое пространство может иметь больше двух измерений. Адс - пространство, больше всего похожее на наше пространство - время (с тремя пространственными измерениями), дает в поперечном сечении своего "Цилиндра" трехмерную "картину Эшера".

Физика в адс - пространстве несколько необычна. Свободно перемещаясь в нем, наблюдатель чувствовал бы себя как на дне гравитационного колодца. Любой брошенный им предмет бы к нему как бумеранг возвращался. Любопытно, что время, требуемое для возвращения, не зависело бы от того, с какой силой был брошен предмет. Однако чем сильнее бросить его, тем дальше он пролетит туда и обратно. Таким образом, если бы обитателю этого причудливого мира вздумалось посветить лазером куда-нибудь в пустоту, то фотоны, движущиеся со скоростью света, достигли бы бесконечности и возвратились к источнику излучения за конечное время. Дело в том, что в адс - пространстве объекты, удаляясь от наблюдателя, испытывают все большее сокращение времени.

Голограмма.

У бесконечного адс - пространства есть расположенная в бесконечности граница. Чтобы изобразить ее, физики и математики используют искаженный масштаб длины, позволяющий сжать бесконечное расстояние в конечное. Упомянутая граница похожа на внешнюю окружность картины Эшера или на поверхность сплошного цилиндра, рассмотренного выше. В последнем случае граница имеет два измерения: пространственное (направляющая цилиндра) и время (образующая цилиндра. Граница четырехмерного адс - пространства - времени имеет два пространственных измерения и одно временнуе. В любой момент времени она представляет собой сферу, на которой и расположена голограмма, рассматриваемая в голографической теории.

Голографическая теория сопоставляет одни физические законы, которые действуют в некотором объеме, с другими, справедливыми на поверхности, его ограничивающей. Физика на границе представлена квантовыми частицами, которые имеют "Цветные" заряды и взаимодействуют почти как кварки и глюоны стандартной физики частиц. Законы внутри - разновидность теории струн, включающая силу тяготения, которую трудно описать в терминах квантовой механики. Однако физика на поверхности и физика в объеме полностью эквивалентны несмотря на совершенно различные способы описания.
Идея состоит в следующем: квантовая теория гравитации внутри адс - пространства - времени полностью эквивалентна обычной квантовой теории частиц, находящихся на границе. Эквивалентность означает, что мы можем использовать относительно понятную квантовую теорию частиц, чтобы создать до сих пор неясную квантовую теорию гравитации.

Представьте две копии кинофильма: одна на рулонах 70-миллиметровой пленки, другая - на DVD. В первом случае имеем дело с целлулоидной кинолентой, каждый кадр которой можно без особого труда соотнести с тем или иным эпизодом фильма. Во втором случае перед нами жесткий двумерный диск с кольцами точек, которые по-разному отражают свет лазера и образуют последовательность нулей и единиц, которую мы вообще не в состоянии воспринять. Тем не менее, оба носителя "Описывают" один и тот же кинофильм.

Точно так же две теории, на первый взгляд совершенно отличные по содержанию, описывают одну и ту же вселенную. DVD напоминает радужно блестящий металлический диск, а теория частиц на границе "Напоминает" теорию частиц в отсутствие гравитации. Кадры фильма, записанного на DVD, появляются на экране только после соответствующей обработки битов. Квантовая гравитация и дополнительное измерение появляются из теории частиц на границе лишь тогда, когда ее уравнения правильно проанализированы.

Что же означает эквивалентность двух теорий? Во-первых, для каждого объекта в одной теории должен существовать аналог в другой. Описания объектов могут быть совершенно разными: определенной частице внутри пространства может соответствовать целая совокупность частиц на его границе, рассматриваемая как единая сущность. Во-вторых, предсказания для соответствующих объектов должны быть идентичными. Например, если две частицы внутри пространства сталкиваются с вероятностью 40%, то соответствующие им совокупности частиц на его границе также должны сталкиваться с вероятностью 40%.

Рассмотрим эквивалентность более подробно. Взаимодействия частиц, существующих на границе, очень похожи на взаимодействия кварков и глюонов (из кварков состоят протоны и нейтроны, а глюоны создают сильное ядерное взаимодействие, связывающее кварки. Кварки обладают своего рода зарядом; его виды называют цветами, а законы их взаимодействия - хромодинамикой. В отличие от обычных кварков и глюонов частицы на границе имеют не три, а гораздо большее количество цветов.

Джерард т'хофт (Gerard 't Hooft) из утрехтского университета в Нидерландах занимался подобными теориями еще в 1974 году и предсказал, что глюоны могут образовывать цепи, которые ведут себя почти как струны в теории струн. Их природа оставалась неясной, но в 1981 году Александр поляков, работающий сейчас в принстонском университете, заметил, что у пространства, в котором существуют струны, больше измерений, чем у того, в котором существуют глюоны. В голографических теориях пространство с бульшим числом измерений - это внутренняя часть адс - пространства.

Чтобы понять, откуда появляется дополнительное измерение, рассмотрим одну из глюонных струн на границе. Струна имеет толщину, зависящую от того, насколько ее глюоны размазаны в пространстве. Расчеты показывают, что на границе адс - пространства струны с различными толщинами взаимодействуют друг с другом так слабо, как если бы они были разделены в пространстве. Иными словами, толщину струны можно рассматривать как пространственную координату, ось которой направлена от границы.

Таким образом, тонкая граничная струна похожа на струну, расположенную близко к границе, тогда как толстая подобна струне, удаленной от нее. Именно эта дополнительная координата и нужна для описания движения в четырехмерном адс - пространстве - времени! Наблюдателю в пространстве - времени граничные струны разной толщины представляются одинаково тонкими, но имеющими различные радиальные положения. Количеством цветов на границе определяется размер внутренней части пространства (радиус граничной сферы. Чтобы пространство - время не уступало в размерах видимой вселенной, в теории должно быть не менее 1060 цветов.

Оказывается, что один тип глюонной цепи ведет себя в четырехмерном пространстве - времени как гравитон, фундаментальная квантовая частица гравитации. В этом описании гравитация в четырех измерениях - явление, возникающее в результате взаимодействий частиц в трехмерном мире без гравитации. Появление в теории гравитонов не вызывает удивления, поскольку физики еще с 1974 года знали, что теория струн так или иначе приведет к квантовой гравитации. Струны, образованные глюонами, не исключение, просто гравитация работает в пространстве большего числа измерений.

Таким образом, голографическое соответствие - не просто новая возможность создания квантовой теории гравитации. Оно фундаментальным образом объединяет теорию струн как наиболее изученный подход к квантовой гравитации с теорией кварков и глюонов, которая является краеугольным камнем физики элементарных частиц. Более того, голографическая теория, по-видимому, позволяет составить какое-то представление о точных уравнениях теории струн. Она была придумана в конце 1960-х годов для описания сильных взаимодействий, но ее забросили, когда на сцене появилась теория хромодинамики. Соответствие между теорией струн и хромодинамикой подразумевает, что прежние усилия не пропали даром: оба описания являются различными сторонами одной и той же монеты.