Наука для всех простыми словами

Самый лучший сайт c познавательной информацией.

Как построить модуль, который сможет прожить на Венере хотя бы неделю?

16.07.2016 в 01:28

Чтобы сделать зонд, который проживет дольше - день хотя бы, - необходима прочная электроника, которая сможет выдержать высокие температуры, или система охлаждения для зонда, который, по сути, будет в духовке. Ему придется работать без солнечных батарей, которые мало эффективны на планете с вечной тенью. Батареи долго не протянут и не смогут выработать достаточно энергии.


Говоря об электронике, ученые Nasa ищут новые материалы для компьютерных чипов, которые будут продолжать работать при высоких температурах. "При 500 градусах по цельсию правила игры меняются, - говорит Гэри хантер, инженер - исследователь в Nasa. - нужны другие изоляторы и другие контакты …. Нужно заново придумывать, как собирать эти схемы вместе".

Проблема в том, говорит хантер, что при высоких температурах многие материалы начинают вести себя по-другому. Например, кремний является полупроводником, а при высоких температурах - около 300 градусов - он становится проводником, менее полезным для электроники. Другая проблема заключается в том, что даже если сами кремниевые схемы выживут, трудно придумать материалы для соединений между схемами, которые не перестанут работать в горячей атмосфере Венеры.

Хантер говорит, Nasa занимается кремниевой электроникой на основе карбида, которая сможет работать дольше при температурах венерианской поверхности. Минус такого подхода в том, что такие чипы будут слабее современных компьютерных. Согласно презентации 2014 года, которую представила Venus Exploration Analysis Group в Nasa, такая электроника будет по мощности сопоставима с электроникой 60-х. "Мы не Повезем Туда"пентиумы", говорит хантер. Но если немного пораскинуть мозгами, этого может быть достаточно, чтобы сделать снимки и принять данные с зонда и передать их на орбиту, на более продвинутый орбитальный модуль.

Цель исследователей, по словам хантера, заставить электронику проработать тысячи часов - пережить хотя бы один венерианский день, который в 117 раз длиннее земного.

Что касается энергетических систем, Тимоти Миллер и Майкл пол из университета штата пенсильвания предложили использовать двигатель Стирлинга.

Двигатель Стирлинга начинается с рабочей жидкости внутри "Холодной" камеры (холодная означает то, что температура ниже, а не совсем низкая. Жидкость сжимается поршнем и движется во вторую камеру, где нагревается. Нагретая жидкость расширяется, передвигая второй поршень, связанный с первым с помощью колеса или рычага. По мере того, как второй пистон движется, он отодвигает жидкость обратно к холодной части, где остывает, и цикл начинается снова. Пока существует источник тепла, двигатель продолжает работать. Сегодня двигатели Стирлинга используются в системах охлаждения и даже на подводных лодках.

Сама технология существует с 1816 года, ее изобрел шотландский священник Роберт Стирлинг. Миллер и пол считают, что эту старую идею можно использовать для космических аппаратов будущего, и написали об этом в журнале Acta Astronautica. Nasa уже профинансировало первые испытания.

Двигатель Стирлинга, говорит Миллер, может обеспечить достаточно энергии, чтобы охладить электронику и дать инструментам электричество, чтобы они могли работать дольше, чем на батареях. Рабочей жидкостью, вероятнее всего, будет гелий, поскольку он более эффективно передает тепло по сравнению с другими газами и не вступает в реакцию.

Но одной энергией все не ограничивается: двигателю Стирлинга нужно топливо. Миллер и его команда остановились на литии, который может гореть в атмосфере из углекислого газа и азота. (Азот составляет 4% воздуха Венеры. Литий также плавится при температуре 180 градусов, что делает его эффективным жидким топливом на Венере.

При этом уменьшается вес космического аппарата на старте - все, что нужно, это взять с собой лития. 50 килограммов в сочетании с двигательной и топливной установкой могут обеспечить зонд энергией на два дня, в соответствии с исследованиями Миллера.

Двигатель должен быть сконфигурирован как однопоршневая система, холодная с одной стороны и горячая с другой; поршень будет толкать генератор переменного тока назад и вперед, вырабатывая электричество. Команда Миллера провела небольшие испытания, при 4-5 атмосферах; нужно дополнительное финансирование, чтобы провести испытания в условиях, приближенных к Венере.

Кроме того, литий не загрязняет окружающую среду. Казалось бы, на необитаемой планете об этом думать нужно в последнюю очередь, но ученым не нравится такой подход. Им нужна система, которая будет одинаково хорошо и чисто работать в любых условиях, не только на Венере.

Когда литий сгорает в атмосфере из углекислого газа, образуется карбонат лития. Из этого следует, что показания посадочного модуля, исследующего атмосферу, не будут обезображены выхлопными газами.

Внимание! Только в том случае, если команде ученых получится показать, что их система работает при давлении в 90 атмосфер, можно будет всерьез говорить о возможных полетах на Венеру. Таким образом, если удастся показать, что она проработает хотя бы неделю.

Венера и земля во многом похожи. Их радиусы расходятся всего на пару процентов, а масса Венеры составляет 81% земной. Когда планеты сформировались, они были в соседних частях солнечной туманности, поэтому их основной состав тоже похож. Технологии, которые позволят нам создать долгоживущий посадочный модуль, могут стать ключевыми в решении загадки: почему одна планета стала домом для жизни, а другая стала филиалом ада.